Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Pathogens ; 12(5)2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-20244465

ABSTRACT

In the past few years, the continuous pandemic of COVID-19 caused by SARS-CoV-2 has placed a huge burden on public health. In order to effectively deal with the emergence of new SARS-CoV-2 variants, it becomes meaningful to further enhance the immune responses of individuals who have completed the first-generation vaccination. To understand whether sequential administration using different variant sequence-based inactivated vaccines could induce better immunity against the forthcoming variants, we tried five inactivated vaccine combinations in a mouse model and compared their immune responses. Our results showed that the sequential strategies have a significant advantage over homologous immunization by inducing robust antigen-specific T cell immune responses in the early stages of immunization. Furthermore, the three-dose vaccination strategies in our research elicited better neutralizing antibody responses against the BA.2 Omicron strain. These data provide scientific clues for finding the optimal strategy within the existing vaccine platform in generating cross-immunity against multiple variants including previously unexposed strains.

2.
BMC Public Health ; 23(1): 1084, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20243611

ABSTRACT

By 31 May 2022, original/Alpha, Delta and Omicron strains induced 101 outbreaks of COVID-19 in mainland China. Most outbreaks were cleared by combining non-pharmaceutical interventions (NPIs) with vaccines, but continuous virus variations challenged the dynamic zero-case policy (DZCP), posing questions of what are the prerequisites and threshold levels for success? And what are the independent effects of vaccination in each outbreak? Using a modified classic infectious disease dynamic model and an iterative relationship for new infections per day, the effectiveness of vaccines and NPIs was deduced, from which the independent effectiveness of vaccines was derived. There was a negative correlation between vaccination coverage rates and virus transmission. For the Delta strain, a 61.8% increase in the vaccination rate (VR) reduced the control reproduction number (CRN) by about 27%. For the Omicron strain, a 20.43% increase in VR, including booster shots, reduced the CRN by 42.16%. The implementation speed of NPIs against the original/Alpha strain was faster than the virus's transmission speed, and vaccines significantly accelerated the DZCP against the Delta strain. The CRN ([Formula: see text]) during the exponential growth phase and the peak time and intensity of NPIs were key factors affecting a comprehensive theoretical threshold condition for DZCP success, illustrated by contour diagrams for the CRN under different conditions. The DZCP maintained the [Formula: see text] of 101 outbreaks below the safe threshold level, but the strength of NPIs was close to saturation especially for Omicron, and there was little room for improvement. Only by curbing the rise in the early stage and shortening the exponential growth period could clearing be achieved quickly. Strengthening China's vaccine immune barrier can improve China's ability to prevent and control epidemics and provide greater scope for the selection and adjustment of NPIs. Otherwise, there will be rapid rises in infection rates and an extremely high peak and huge pressure on the healthcare system, and a potential increase in excess mortality.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , China/epidemiology , Policy
3.
Front Immunol ; 14: 1160283, 2023.
Article in English | MEDLINE | ID: covidwho-20230711

ABSTRACT

Introduction: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been posing a severe threat to global public health. Although broadly neutralizing antibodies have been used to prevent or treat corona virus disease 2019 (COVID-19), new emerging variants have been proven resistant to these antibodies. Methods: In this study, we isolated receptor binding domain (RBD)-specific memory B cells using single-cell sorting method from two COVID-19 convalescents and expressed the antibody to test their neutralizing activity against diverse SARS-CoV-2 variants. Then, we resolved antibody-RBD complex structures of potent RBD-specific neutralizing antibodies by X-ray diffraction method. Finally, we analyzed the whole antibody repertoires of the two donors and studied the evolutionary pathway of potent neutralizing antibodies. Results and discussion: We identified three potent RBD-specific neutralizing antibodies (1D7, 3G10 and 3C11) from two COVID-19 convalescents that neutralized authentic SARS-CoV-2 WH-1 and Delta variant, and one of them, 1D7, presented broadly neutralizing activity against WH-1, Beta, Gamma, Delta and Omicron authentic viruses. The resolved antibody-RBD complex structures of two antibodies, 3G10 and 3C11, indicate that both of them interact with the external subdomain of the RBD and that they belong to the RBD-1 and RBD-4 communities, respectively. From the antibody repertoire analysis, we found that the CDR3 frequencies of the light chain, which shared high degrees of amino acid identity with these three antibodies, were higher than those of the heavy chain. This research will contribute to the development of RBD-specific antibody-based drugs and immunogens against multiple variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing
4.
Open Forum Infect Dis ; 10(3): ofad075, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2276201

ABSTRACT

Background: A continuing nationwide vaccination campaign began in the Dominican Republic on February 16, 2021 to prevent severe consequences of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Estimates of vaccine effectiveness under real-world conditions are needed to support policy decision making and inform further vaccine selection. Methods: We conducted a test-negative case-control study to assess the real-world effectiveness of nationwide coronavirus disease 2019 (COVID-19) vaccination program using an inactivated vaccine (CoronaVac) on preventing symptomatic SARS-CoV-2 infections and hospitalizations from August to November 2021 in the Dominican Republic. Participants were recruited from 10 hospitals in 5 provinces to estimate the effectiveness of full immunization (≥14 days after receipt of the second dose) and partial immunization (otherwise with at least 1 dose ≥14 days after receipt of the first dose). Results: Of 1078 adult participants seeking medical care for COVID-19-related symptoms, 395 (36.6%) had positive polymerase chain reaction (PCR) tests for SARS-CoV-2; 142 (13.2%) were hospitalized during 15 days of follow up, including 91 (23%) among 395 PCR-positive and 51 (7.5%) among 683 PCR-negative participants. Full vaccination was associated with 31% lower odds of symptomatic infection (odds ratio [OR], 0.69; 95% confidence interval [CI], 0.52-0.93) and partial vaccination was associated with 49% lower odds (OR, 0.51; CI, 0.30-0.86). Among 395 PCR-positive participants, full vaccination reduced the odds of COVID-19-related hospitalization by 85% (OR, 0.15; 95% CI, 0.08-0.25) and partial vaccination reduced it by 75% (OR, 0.25; 95% CI, 0.08-0.80); full vaccination was associated with reduced use of assisted ventilation by 73% (OR, 0.27; 95% CI, 0.15-0.49). Conclusions: Given the ancestral and delta viral variants circulating during this study period, our results suggest that the inactivated COVID-19 vaccine offered moderate protection against symptomatic SARS-CoV-2 infections and high protection against COVID-19-related hospitalizations and assisted ventilation. This is reassuring given that, as of August 2022, an estimated 2.6 billion inactivated CoronaVac vaccine doses had been administered worldwide. This vaccine will become a basis for developing multivalent vaccine against the currently circulating omicron variant.

5.
J Infect Dis ; 2023 Apr 03.
Article in English | MEDLINE | ID: covidwho-2283518

ABSTRACT

BACKGROUND: China has been using inactivated COVID-19 vaccines as primary series and booster doses to protect the population from severe to fatal COVID-19. We evaluated primary and booster vaccine effectiveness (VE) against Omicron BA.2 infection outcomes. METHODS: This was a 13-province retrospective cohort study of quarantined close contacts of BA.2-infected individuals. Outcomes were BA.2 infection, COVID-19 pneumonia or worse, and severe/critical COVID-19. Absolute VE was estimated by comparison with an unvaccinated group. RESULTS: There were 289,427 close-contacts ≥3 years old exposed to Omicron BA.2 cases; 31,831 turned nucleic-acid amplification test (NAAT)-positive during quarantine, 97.2% with mild or asymptomatic infection, 2.6% had COVID-19 pneumonia, and 0.15% had severe/critical COVID-19. None died. Adjusted VE against any infection was 17% for primary series and 22% when boosted. Primary series aVE in adults >18 years was 66% against pneumonia or worse infection and 91% against severe/critical COVID-19. Booster dose aVE was 74% against pneumonia or worse, and 93% against severe/critical COVID-19. CONCLUSIONS: Inactivated COVID-19 vaccines provided modest protection from infection, very good protection against pneumonia, and excellent protection against severe/critical COVID-19. Booster doses are necessary to provide strongest protection.

6.
Ren Fail ; 44(1): 1263-1279, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2287660

ABSTRACT

BACKGROUND: Nafamostat mesilate (NM), a broad-spectrum and potent serine protease inhibitor, can be used as an anticoagulant during extracorporeal circulation, as well as a promising drug effective against coronavirus disease 2019 (COVID-19). We conducted a systematic meta-analysis to evaluate the safety and efficacy of NM administration in critically ill patients who underwent blood purification therapy (BPT). METHODS: The Cochrane Library, Web of Science and PubMed were comprehensively searched from inception to August 20, 2021, for potential studies. RESULTS: Four randomized controlled trials (RCTs) and seven observational studies with 2723 patients met the inclusion criteria. The meta-analysis demonstrated that conventional therapy (CT) significantly increased hospital mortality compared with NM administration (RR = 1.25, p = 0.0007). In subgroup analyses, the in-hospital mortality of the NM group was significantly lower than that of the anticoagulant-free (NA) group (RR = 1.31, p = 0.002). The CT interventions markedly elevated the risk ratio of bleeding complications by 45% (RR = 1.45, p = 0.010) compared with NM interventions. In another subgroup analysis, NM used exhibited a significantly lower risk of bleeding complications than those of the low-molecular-weight heparin (LMWH) used (RR = 4.58, p = 0.020). The filter lifespan was decreased significantly (MD = -10.59, p < 0.0001) in the NA groups compared with the NM groups. Due to the poor quality of the included RCTs, these results should be interpreted with caution. CONCLUSION: Given the better survival outcomes, lower risk of bleeding, NM anticoagulation seems to be a safe and efficient approach for BPT patients and could yield a favorable filter lifespan. More multi-center RCTs with large samples are required for further validation of this study.


Subject(s)
COVID-19 Drug Treatment , Critical Illness , Anticoagulants/adverse effects , Benzamidines , Critical Illness/therapy , Guanidines , Heparin/adverse effects , Heparin, Low-Molecular-Weight/therapeutic use , Humans
7.
Front Cell Infect Microbiol ; 12: 978440, 2022.
Article in English | MEDLINE | ID: covidwho-2198706

ABSTRACT

Purpose: This study was conducted in order to properly understand whether prior seasonal human coronavirus (HCoV) immunity could impact the potential cross-reactivity of humoral responses induced by SARS-CoV-2 vaccine, thereby devising universal coronavirus vaccines for future outbreaks. Methods: We performed enzyme-linked immunosorbent assay (ELISA) to quantify the immunoglobulin G (IgG) antibody levels to spike (S) protein and S1 subunit of HCoVs (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E), and ELISA [anti-RBD and anti-nucleoprotein (N)], chemiluminescence immunoassay assays (anti-RBD), pseudovirus neutralization test, and authentic viral neutralization test to detect the binding and neutralizing antibodies to SARS-CoV-2 in the vaccinees. Results: We found that the antibody of seasonal HCoVs did exist before vaccination and could be boosted by SARS-CoV-2 vaccine. A further analysis demonstrated that the prior S and S1 IgG antibodies of HCoV-OC43 were positively correlated with anti-RBD and neutralization antibodies to SARS-CoV-2 at 12 and 24 weeks after the second vaccination, and the correlation is more statistically significant at 24 weeks. The persistent antibody levels of SARS-CoV-2 were observed in vaccinees with higher pre-existing HCoV-OC43 antibodies. Conclusion: Our data indicate that inactivated SARS-CoV-2 vaccination may confer cross-protection against seasonal coronaviruses in most individuals, and more importantly, the pre-existing HCoV-OC43 antibody was associated with protective immunity to SARS-CoV-2, supporting the development of a pan-coronavirus vaccine.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , SARS-CoV-2 , Vaccination
8.
BMJ Open ; 12(11): e063919, 2022 11 11.
Article in English | MEDLINE | ID: covidwho-2119454

ABSTRACT

ObjectiveTwo COVID-19 outbreaks occurred in Henan province in early 2022-one was a Delta variant outbreak and the other was an Omicron variant outbreak. COVID-19 vaccines used at the time of the outbreak were inactivated, 91.8%; protein subunit, 7.5%; and adenovirus5-vectored, 0.7% vaccines. The outbreaks provided an opportunity to evaluate variant-specific breakthrough infection rates and relative protective effectiveness of homologous inactivated COVID-19 vaccine booster doses against symptomatic infection and pneumonia. DESIGN: Retrospective cohort study METHODS: We evaluated relative vaccine effectiveness (rVE) with a retrospective cohort study of close contacts of infected individuals using a time-dependent Cox regression model. Demographic and epidemiologic data were obtained from the local Centers for Disease Control and Prevention; clinical and laboratory data were obtained from COVID-19-designated hospitals. Vaccination histories were obtained from the national COVID-19 vaccination dataset. All data were linked by national identification number. RESULTS: Among 784 SARS-CoV-2 infections, 379 (48.3%) were caused by Delta and 405 (51.7%) were caused by Omicron, with breakthrough rates of 9.9% and 17.8%, respectively. Breakthrough rates among boosted individuals were 8.1% and 4.9%. Compared with subjects who received primary vaccination series ≥180 days before infection, Cox regression modelling showed that homologous inactivated booster vaccination was statistically significantly associated with protection from symptomatic infection caused by Omicron (rVE 59%; 95% CI 13% to 80%) and pneumonia caused by Delta (rVE 62%; 95% CI 34% to 77%) and Omicron (rVE 87%; 95% CI 3% to 98%). CONCLUSIONS: COVID-19 vaccination in China provided good protection against symptomatic COVID-19 and COVID-19 pneumonia caused by Delta and Omicron variants. Protection declined 6 months after primary series vaccination but was restored by homologous inactivated booster doses given 6 months after the primary series.


Subject(s)
COVID-19 , United States , Humans , Vaccines, Inactivated , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Retrospective Studies , Vaccine Efficacy , SARS-CoV-2
9.
Vaccine ; 40(49): 7141-7150, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2086812

ABSTRACT

The mass vaccination program has been actively promoted since the end of 2020. However, waning immunity, antibody-dependent enhancement (ADE), and increased transmissibility of variants make the herd immunity untenable and the implementation of dynamic zero-COVID policy challenging in China. To explore how long the vaccination program can prevent China at low resurgence risk, and how these factors affect the long-term trajectory of the COVID-19 epidemics, we developed a dynamic transmission model of COVID-19 incorporating vaccination and waning immunity, calibrated using the data of accumulative vaccine doses administered and the COVID-19 epidemic in 2020 in mainland China. The prediction suggests that the vaccination coverage with at least one dose reach 95.87%, and two doses reach 77.92% on 31 August 2021. However, despite the mass vaccination, randomly introducing infected cases in the post-vaccination period causes large outbreaks quickly with waning immunity, particularly for SARS-CoV-2 variants with higher transmissibility. The results showed that with the current vaccination program and 50% of the population wearing masks, mainland China can be protected at low resurgence risk until 8 January 2023. However, ADE and higher transmissibility for variants would significantly shorten the low-risk period by over 1 year. Furthermore, intermittent outbreaks can occur while the peak values of the subsequent outbreaks decrease, indicating that subsequent outbreaks boosted immunity in the population level, further indicating that follow-up vaccination programs can help mitigate or avoid the possible outbreaks. The findings revealed that the integrated effects of multiple factors: waning immunity, ADE, relaxed interventions, and higher variant transmissibility, make controlling COVID-19 challenging. We should prepare for a long struggle with COVID-19, and not entirely rely on the COVID-19 vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Antibody-Dependent Enhancement , COVID-19 Vaccines , Vaccination/methods , China/epidemiology
10.
Frontiers in cellular and infection microbiology ; 12, 2022.
Article in English | EuropePMC | ID: covidwho-2034024

ABSTRACT

Purpose This study was conducted in order to properly understand whether prior seasonal human coronavirus (HCoV) immunity could impact the potential cross-reactivity of humoral responses induced by SARS-CoV-2 vaccine, thereby devising universal coronavirus vaccines for future outbreaks. Methods We performed enzyme-linked immunosorbent assay (ELISA) to quantify the immunoglobulin G (IgG) antibody levels to spike (S) protein and S1 subunit of HCoVs (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E), and ELISA [anti-RBD and anti-nucleoprotein (N)], chemiluminescence immunoassay assays (anti-RBD), pseudovirus neutralization test, and authentic viral neutralization test to detect the binding and neutralizing antibodies to SARS-CoV-2 in the vaccinees. Results We found that the antibody of seasonal HCoVs did exist before vaccination and could be boosted by SARS-CoV-2 vaccine. A further analysis demonstrated that the prior S and S1 IgG antibodies of HCoV-OC43 were positively correlated with anti-RBD and neutralization antibodies to SARS-CoV-2 at 12 and 24 weeks after the second vaccination, and the correlation is more statistically significant at 24 weeks. The persistent antibody levels of SARS-CoV-2 were observed in vaccinees with higher pre-existing HCoV-OC43 antibodies. Conclusion Our data indicate that inactivated SARS-CoV-2 vaccination may confer cross-protection against seasonal coronaviruses in most individuals, and more importantly, the pre-existing HCoV-OC43 antibody was associated with protective immunity to SARS-CoV-2, supporting the development of a pan-coronavirus vaccine.

11.
Emerg Microbes Infect ; 11(1): 1950-1958, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1937611

ABSTRACT

Using a three-prefecture, two-variant COVID-19 outbreak in Henan province in January 2022, we evaluated the associations of primary and booster immunization with China-produced COVID-19 vaccines and COVID-19 pneumonia and SARS-CoV-2 viral load among persons infected by Delta or Omicron variant. We obtained demographic, clinical, vaccination, and multiple Ct values of infections ≥3 years of age. Vaccination status was either primary series ≥180 days prior to infection; primary series <180 days prior to infection, or booster dose recipient. We used logistic regression to determine odds ratios (OR) of Delta and Omicron COVID-19 pneumonia by vaccination status. We analysed minimum Ct values by vaccination status, age, and variant. Of 826 eligible cases, 405 were Delta and 421 were Omicron cases; 48.9% of Delta and 19.0% of Omicron cases had COVID-19 pneumonia. Compared with full primary vaccination ≥180 days before infection, the aOR of pneumonia was 0.48 among those completing primary vaccination <180 days and 0.18 among booster recipients among these Delta infections. Among Omicron infections, the corresponding aOR was 0.34 among those completing primary vaccination <180 days. There were too few (ten) Omicron cases among booster dose recipients to calculate a reliable OR. There were no differences in minimum Ct values by vaccination status among the 356 Delta cases or 70 Omicron cases. COVID-19 pneumonia was less common among Omicron cases than Delta cases. Full primary vaccination reduced pneumonia effectively for 6 months; boosting six months after primary vaccination resulted in further reduction. We recommend accelerating the pace of booster dose administration.


Subject(s)
COVID-19 , Pneumonia , COVID-19/prevention & control , COVID-19 Vaccines , China/epidemiology , Humans , Immunization, Secondary/methods , SARS-CoV-2 , Viral Load
13.
Front Med ; 16(2): 185-195, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1712327

ABSTRACT

The record speed at which Chinese scientists identified severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) and shared its genomic sequence with the world, has greatly facilitated the development of coronavirus disease (COVID-19) diagnostics, drugs, and vaccines. It is unprecedented in pandemic control history to develop a dozen successful vaccines in the first year and to immunize over half of the global population in the second year, due to the efforts of the scientific community, biopharmaceutical industry, and regulatory agencies worldwide. The challenges are both great and multidimensional due to the rapid emergence of virus variants and waning of vaccine immunity. Vaccination strategies need to adapt to these challenges to keep population immunity above the herd immunity threshold, by increasing vaccine coverage, especially for older adults and young people, and providing timely booster doses with homologous or heterologous vaccine boosts. Further research should be undertaken to develop more effective vaccines against SARS-CoV-2 variants and to understand the best prime-boost vaccine combinations and immunization strategies to provide sufficient and sustainable immune protection against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Aged , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2 , Vaccination
14.
Pathogens ; 11(2)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1677702

ABSTRACT

Assessing the duration of neutralizing antibodies (nAbs) following SARS-CoV-2 infection or vaccination is critical to evaluate the protective immunity and formulate public health strategies. In this study, SARS-CoV-2 Ab ELISA (enzyme-linked immunosorbent assay), chemiluminescent microparticle immunoassay (CMIA), as well as pseudovirus neutralization test (PVNT) were performed in two cohorts, convalescent patients (CP) from coronavirus disease 2019 (COVID-19) and BBIBP-CorV vaccinated population. It was found that nAbs and binding antibodies emerged at 14 days post the 1st dose of vaccination, reached peaks at 28 days after 2nd dose vaccination and then gradually declined over time. CP-6M (convalescent patients up to 6 months) from COVID-19 presented stronger nAbs or binding antibodies responses than vaccinees 90 days or 180 days after 2nd dose vaccination. CMIA or SARS-CoV-2 Ab ELISA correlated well with PVNT with high consistency in the two cohorts. It shown that nAbs and binding antibodies can keep 6 months both in CP and vaccinees. Most importantly, our data show the application of using CMIA and SARS-CoV-2 Ab ELISA as rapid screening tests for nAb titer and could be used as alternative strategies for quickly evaluating SARS-CoV-2 nAbs responses in vaccine research.

15.
BMC Public Health ; 21(1): 605, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1158204

ABSTRACT

BACKGROUND: The COVID-19 pandemic is complex and is developing in different ways according to the country involved. METHODS: To identify the key parameters or processes that have the greatest effects on the pandemic and reveal the different progressions of epidemics in different countries, we quantified enhanced control measures and the dynamics of the production and provision of medical resources. We then nested these within a COVID-19 epidemic transmission model, which is parameterized by multi-source data. We obtained rate functions related to the intensity of mitigation measures, the effective reproduction numbers and the timings and durations of runs on medical resources, given differing control measures implemented in various countries. RESULTS: Increased detection rates may induce runs on medical resources and prolong their durations, depending on resource availability. Nevertheless, improving the detection rate can effectively and rapidly reduce the mortality rate, even after runs on medical resources. Combinations of multiple prevention and control strategies and timely improvement of abilities to supplement medical resources are key to effective control of the COVID-19 epidemic. A 50% reduction in comprehensive control measures would have led to the cumulative numbers of confirmed cases and deaths exceeding 590,000 and 60,000, respectively, by 27 March 2020 in mainland China. CONCLUSIONS: Multiple data sources and cross validation of a COVID-19 epidemic model, coupled with a medical resource logistic model, revealed the key factors that affect epidemic progressions and their outbreak patterns in different countries. These key factors are the type of emergency medical response to avoid runs on medical resources, especially improved detection rates, the ability to promote public health measures, and the synergistic effects of combinations of multiple prevention and control strategies. The proposed model can assist health authorities to predict when they will be most in need of hospital beds and equipment such as ventilators, personal protection equipment, drugs, and staff.


Subject(s)
COVID-19/therapy , Delivery of Health Care/organization & administration , Disease Outbreaks/prevention & control , Health Resources/statistics & numerical data , Pandemics , China/epidemiology , Delivery of Health Care/statistics & numerical data , Humans , Models, Theoretical , SARS-CoV-2 , Time Factors
17.
Infect Dis Model ; 5: 233-234, 2020.
Article in English | MEDLINE | ID: covidwho-831324
18.
Infect Dis Model ; 5: 848-854, 2020.
Article in English | MEDLINE | ID: covidwho-813617

ABSTRACT

The pandemic of the coronavirus disease (COVID-19) poses a huge challenge all countries, since no one is well prepared for it. To be better prepared for future pandemics, we evaluated association between the internet search data with reported COVID-19 cases to verify whether it could become an early indicator for emerging epidemic. After the keyword filtering and Index composition, we found that there were close correlations between Composite Index and suspected cases for COVID-19 (r = 0.921, P < 0.05). The Search Index was applied for the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model to quantify the relationship. Compared with the model based on surveillance data only, the ARIMAX model had smaller Akaike Information Criterion (AIC = 403.51) and the most accurate predictive values. Overall, the Internet search data could serve as a convenient indicator for predicting the epidemic and to monitor its trends.

19.
Infect Dis Model ; 5: 282-292, 2020.
Article in English | MEDLINE | ID: covidwho-30935

ABSTRACT

Based on the official data modeling, this paper studies the transmission process of the Corona Virus Disease 2019 (COVID-19). The error between the model and the official data curve is quite small. At the same time, it realized forward prediction and backward inference of the epidemic situation, and the relevant analysis help relevant countries to make decisions.

SELECTION OF CITATIONS
SEARCH DETAIL